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ABSTRACT 

using the renormalization group we treat the theory of stationary, 

homogeneous, isotropic turbulence of a fluid mixed by a random force 

which has its strength concentrated at small wave number. We find that 

for mixing which does not vanish at zero wave number that the effective 

Reynolds number always remains small in D # 4 space dimensions. At small 

wave number the energy spectral function E(k) behaves as k -P at D=3 with 

P= -(4-D)/3 in an expansion about D=4. For large wave number E(k) is 

entirely governed by the forcing function. We show in some detail how 

to construct for all k the two fold velocity correlation function using 

the one loop approximation for the renormalization group functions. This 

extends beyond perturbation theory for the correlation functions and is 

improvable in a systematic fashion. 

3 Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

For many years it has been clear that the theory of fully developed 

turbulence is closely connected with problems in quantum field theory. 
1 

This is first brought out by the Hopf equation for the generating 

functional for the velocity correlation functions. Work subsequent to 

Hopf has utilized this observation in a productive fashion to formulate 

the equations of turbulent motion in a manner amenable to non-perturbative 

approximation*. 
2 

In the first paper in this series3 this connection was made quite 

explicit by observing that both turbulent motion and quantum field theory 

are examples of stochastic field theories. The measure of stochasticity 

in quantum field theory is of course H. A similar stochasticity parameter, 

called a in Ref. 3, was introduced to give a sense to the extent or 

fullness of the stochastic behavior of the classical fluid system. This 

analogue was then pursued by exploring the consequences of a non-perturbative 

technique, the renormalization group, to study both the small and large - 

wave number behavior of the velocity correlation functions for turbulence. 

The systems we describe are homogeneous, isotropic and stationary. 

Furthermore we a**ume that the turbulent motion is maintained by an 

external force field which puts in energy to compensate for the losses 

through viscous dissipation. 

Our essential result is an evaluation of the importance of the non- 

linearities in the Navier-Stokes equation. This is contained in the 

effective coupling constant or effective Reynolds number of the motion. 

This effective size of the non-linear effects depends on the part of wave 
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number space one is in. For very large wave number, the effective Reynolds 

number approaches zero rapidly in less than four space dimensions. So 

non-linear effects are absent and the velocity field effectively tracks 

the random force field. In a sense this is not surprising since the 

viscous terms in the Navier-Stokes equation would obviously seem dominant 

at large wave number. However, the fact that for four or more space 

dimensions this "dimensional" argument fails means the situation is *lightly 

more subtle. 

What is most surprising is that for small wave number as well, for 

a large class of realistic forcing functions, the effective Reynolds 

number is still small. Perturbation theory is modified in a smooth, 

calculable fashion. Still the velocity tracks the forcing field to a 

large extent. However the piling up of singularities at small frequency 

and wave number eventually cuts off the spectrum in the small wave number 

region. 

Batchelor4 has described the problem of homogeneous turbulence as 

being the determination of the velocity field distribution at sometime 

given what it was at an earlier time; the dynamics to be governed, of 

cour*e, by the Navier-Stokes equation. As emphasized by Novikov, 
5 

this 

is appropriate in the-non-stationary problem while in the stationary 

problem, as treated in this paper only an average over the random forcing 

introduced to maintain the turbulence is needed. These forces Fj are 

akin to some velocity distribution because of the Navier-Stokes equation 

Fj(:,t) = 2 V. - 
1 

vV2vj + %[(AjnVa, + AjllVn) (vIIve)l 

with A. = 6ja - VjVa/V2 coming from incompressibility. The random force 
1% 
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allows us to treat a stationary problem where at t -f -m the fluid was 

quiescent and the turbulence has been stimulated by the forcing. In the 

non-stationary problem we can consider a quiescent fluid which is stirred 

for some time by random forces and then permitted to decay. The initial 

velocity field distribution is established by the stirring and Batchelor's 

formulation now becomes the question of observing the decay. 

We will take the random stirring force to be gaussian with zero mean, 

so all we need is the correlation function. To concentrate on the re- 

normalization group aspects of the theory we studied earlier a wholly 

unrealistic forcing field which mixed the fluid uniformly in frequency 

and wave number. In this paper we examine in detail a more realistic 

story where the mixing is concentrated at small wave numbers k 5 k o, or 

equivalently is peaked about some external scale k -1 
0 - 

We deal still with 

the stationary problem so the mixing is always on. 

To be more precise we consider a force field Fj(z,t) which is 

solenoidal, has zero mean and correlation function 

<Fj&t)Fa(;,r)> = Aja.(V)f&$t-') (2) 

we shall take the forces to be 6-function correlated in time so 

Also we write 

f G,t) = i: (“x,6 (t) . (3) 

i; &) = '$: (k2/ko2) = px .,$ i; ("x) , (4) 

where we work in D space dimensions, and all the dimensions of? are 

contained in Y 
2 
0' 
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Now with such a correlation function, Novikov5 has shown that the 

energy dissipation, E, due to viscosity is 

J 
2 

E _ (D;l) dDp r (p&02):~m 

(21TjD M 
2 

=??-k 
4 0 

rM(p2) . 

(5) 

(6) 

In our earlier work we chose r,(p2) = 1. Of course, then E is infinite 

as one would expect on physical grounds. Here we certainly wish to require 

that E is finite, which means f(O) # 0 or that (5) and (6) converge. Very 

few of our general observations will depend on the detailed form of 

r,(k2). It will matter whether I',(k2 = 0) vanishes or not. For most 

examples of correlation functions peaked near x J k. -l, r,(k2 = 0) is 

finite, so our attention will be turned to such behavior. 

With an external scale in the problem rather little changes in the 

details of our analysis. We do have a natural length on which to base 

the Reynolds number. When r,(k2) = 1, then there is no external scale 

and the Reynolds number must be defined in terms of the renormalization 

scale k N introduced in Ref. 3. According to the dimensional analysis 

done there, the only dimensionless quantity around is 

-(length64-D)'2 , YO 
" 3/-J 

where u is the kinematic viscosity of the fluid. The Reynolds number 

based on the external length k. -' is 

YO 
R =v3/2 kO 

(D-4)/2 _ 

(7) 

(8) 

With this we can express the Kolmogorov turbulent length scale ri as 
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-1 
n = (E/v3)’ = koK . (9) 

-1 To have a large inertial subrange k. << k << @k. = IJ , we clearly need 

large R. 

When we use the renormalization group to study the turbulence developed 

through the mixing (1). we will find below, as in the case rM(k2j=l 

discussed before, 
3 

that the k+ limit of the theory is governed by an 

effective Reynolds number which goes to zero as k -(4-D)/4 for D<4 . Thus 

one can use perturbation theory with great accuracy in this wave number 

range, i.e., kn>l. Similarly we will find the small wave number range, 

k<kO to be determined by an effective Reynolds number which is proportional 

to (4-D) and is thus small near D=4. [Probably D=3 is close enough.] The 

intermediate regime k 
0 

<k<q 
-1 

= J-d kg will be governed by a small 

coupling as well but will be a bit more complicated in detail than either 

the large or small k regions. 

The plan of this paper is to first provide a review of the renormalization 

group treatment of stochastic field theory. The role of random mixing 

forces will be treated more explicitly than before. Next we study in 

perturbation theory the properties of the renormalization group functions 

which enter the renormalization group equations for velocity correlation 

function*. We close with comments and discussion of the results. 

II. STOCHASTIC FIELD THEORY AND P.ENOPXALIZATION GROUP 

This section will combine a review of salient features of the field 

theoretic analysis in Ref. 3 with the details needed for a study of the 

c*Se at hand when an external wave number scale k o is present. We will employ 

a slightly altered renormalization prescription as well. 
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We want to investigate the stochastic field theory of the velocity 

field vj6,t) satisfying the Navier-Stokes equation 

-3 v G,,t) + %((hJVU V& + +e(v) vnn)vnve at j 

2 

= 'Ovvj + F' 3 
(10) 

for an incompressible fluid, Vjvj = 0, in the presence of a random stirring 

force F.. 
1 

We will take Fj to have a gaussian distribution functional 

PIFj&)l = exp - 2 dDxdtdDydTFj&) ?;;(:,t;;,~lF&) , J (11) 
where a is the stochasticity parameter introduced previously. The mean 

of Fj in this distribution is zero, and 

<Fj&)Fr(;,~l'F = 
J dFn(:,P)F.(~,t)F,(;,T)PIF.l 

J 
dFn6h'[Fjl 

(12). 

(13) 

The stochastic nature of vj is expressed by giving the generating 

functional for the correlation functions 

- 
zmj,iijl = (J dvj6(V=vn)d;Q6(VkVk)e 

+ dDxdt[i+;j;j+T'jvjl J > F' (14) 

where 

+ V v ;.V v. + F.;. 
OnIn II 

- f[(Ajn(V)Ve + Aje(V)Vn);jl vnvP. (15) 

is the Lagrangian density for (10). It involves the "anti-velocity" ;. 
I 

which is necessary because (1) is linear in time derivatives. Using the 
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distribution function P[Fj] we can perform the gaussian integral indicated 

in (14) to learn 

- ZITlj,nj 1 = J d"j6(vn"n)d;Q6(vave)e 
$ dDrdt[L+;j;j+njvj] J , (16) 

with 

7 L= Gj x Vj + ” v G.0 “. 
Onin 

- 4[(Ajn(V)V~+Aja’V)Vn);jl~n~II . (17) 

This "as the starting point in Ref. 3 and may be found, with appropriate 

translation of notation, in Ref. 5. 

If the distribution functional PIFjl were not gaussian, the integral 

over random forces weighted by PIFjl would be, most likely, impossible to 

do exactly. However, we are really finding here the characteristic 

functional of P[F,l since the integral to do is 

- 
PIFjle 

and one may be able to proceed with a cunulant expansion keeping only a 

few terms. 

As explained in the introduction we wish to choose Fj divergenceless 

and 6-function correlated in time. With a homogeneous, isotropic medium 

we may then "rite 

2 
YO ;je(:,t;;,T) = 6(t-~)-i--Cj,(V)p(ko2(:-~)2) I 

"here T(ko2x2)has dimensions k. 
D so its Fourier transform 

-f-f 

rM(k2/k;) = 
I 

D 
dxe 

-i k'x ~~~~2~2) 
(19) 
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is dimensionless. Novikov5 has shown that the net energy dissipation, E, 

due to viscous forces is 

2 2 
E = (D-1) '0 - 

- y (0) = + (p2,ko2,‘+ ’ (20) 
2 

2 = y. k. (7.1) 

Clearly to have a realistic model of turbulence we must have finite E. 

So f(O) should be non-zero, and rM(k2) must fall rapidly enough for (21) 

to converge. Furthermore we would like T(ko2x2) to peak around the lengths 

kO 
-1 

which are important in the mixing force. If we develop the turbulence 

by passing fluid through a screen with grid spacing L, 4 
the P(ko2X2) should 

peak near x = L or kox = x/L = 1. Many such functions are easy to imagine, 

and very little of what we say below depends on the detailed form of 

i; (ko2x2). It will, however, be important, from a mathematical point of 

view, whether rM(k2/ko2) = 0 or not. Equivalently whether 

I dDx :(ko2X2) = 0 (22) 

or not. A ?(ko2x2) which begins from some non-zero value at x=0 (so 

E#O) and peaks near kox = 1 and then smoothly end rapidly falls to zero 

for x > k 
-1 

0 
= L will not give zero for (22). It would seem then to cover 

most cases of physical interest. For completeness, however, we will also 

discuss the case rM(k2=O) = 0 below. 

A last comment about the forcing function is in order. With no 

forcing or mixing of the fluid the only stationary state of motion is 

clearly vj=o, since the kinetic energy will certainly be dissipated by 

the viscous forces. Driving the fluid by a gaussian random function is 

a more or less realistic representation of the manner in which turbulent 
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motion is realized; it is, however, a useful device to simulate the effect 

of random boundary conditions or initial conditions which may actually be 

responsible for generating the turbulent motion. The very interesting 

situation where the fluid is stirred by a random force which is then 

turned off allows us to study the decay of the turbulent motion. In that 

case we would choose 

2 

i;. (z,t;;,T) = 
YO 

Ii 
yy- Ajr'V'i:'ko2(=_;)2),(-(~ 1 AN-r) (23) 

for stirring turned on long ago end turned off at t=O. The study of the 

turbulent motion from this mixing at large positive times will be the 

subject of the next paper of this series. 

NOW we return to the Lagrangian density (17) and rescale the vj end 

v. by 
1 

-+ YO 
vj(x't) = 1 x0, (:,a , (24) 

1 

and vjw = 2Yo 
-I- + 

x0, (x,t) (25) 
1 

which makes it quite clear that Y 
0 

is the parameter which sets the scale 

of the non-linearity since 

yO 
- -y Wjn (V)Va + Aj~(Wn)iojlxo,x oll . (26) 

In Ref. 3 we gave the rules for constructing the correlation functions 

G(n,m) of n x 
01 

fields and m ? 
01 

fields as a power series in y 
0' 

In the 

present case the rules are modified only by a change in the unperturbed 

correlation function <X .X 
01 Ok'. 

It is called D? $,w) in Ref. 3 and now reeds 
7% 
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D;&w) = Aja.& 
-rM(k2/ko2) 

(itivoi12-E) (iwVoZ2-E) . 
(27) 

We wish to use the renormalization group to study properties of the 

theory defined by (26) beyond the confines of perturbation theory. This 

tool enteres the scene when we study the consequences of replacing the 

. . 
quantltltes xoj I x oj, vo, and Y. by the resealed objects 

Xj&) = z-fxoj&' I (28) 

x.G t) = 2-+ji 3 ' (x't) 
Oj' ' (29) 

v=z 
vvo l 

(30) 

and Y=zyYo , (31) 

by giving the value of certain of the G (*,m) at an arbitrary point in 

k,W space. The requirement that the physical consequnces of the theory 

be independent of this arbitrary normalization point gives constraints 

on all correlation functions known as the renormalization group equations. 

Our renormalization procedure consists in giving values for certain 

derivatives of the renormalized correlation functions 

Gflrl) (k*,W) = 
I J 

++ 
dDxdte i(k'x-wt)<T(xj(~,t)~,(o.o))> (32) 

=A 
jL 

(k) G(l,l) +2 
R (k .w) (33) 

and J 
++ 

(pm 
Ifi 

(Z, W) = dDxdte i'k.x-ut'<T(Xj(:,t)X,(l.O))> (34) 

= Aje(k) G;") (z2,w) (35) 

and of the fusion vertex r. 
1na 

corresponding to the non-linearity in (26). 
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These conditions are 

a, Ll)(~,u)-l 
aU R 

as suggested by the unperturbed value 

= -i 

w =iw 

$0 
N 

= " 

w =iw 

P=o 
N 

Also we choose 

G(l’l) (k’L w)-l = 
0 

-iw + voZ2 . 

-sg q”’ (Z2,4 
1 

= 2iw 
N 

i?=o 

(36) 

(37) 

08) 

(39) 

W =i.W 
N 

k.r.na(~,w:;;,,wl.~2,w2)6na 

k2 
= -iy 

D+l ' (40) 
- 

-f-e + 
k= ql= q 2 =o L-1 * 

o=2wl=2w =iw 
2 N 

again suggested by the unperturbed values as given in (27) and 

r” 
-iYo 

jnP = D+l ('jnkfi + 'jLkn) . (41) 
- 

2(2T) 2 

There is only one change here from Ref. 3. We no" take the nom- 

-+ + 
alization point in k,W space to have all kj=O and wj proportional to iw 

N' 

w 
N 

real. This guarantees that all of the resealing factors for xj,xj,V 
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and Y are real. The factors 2 and i are still equal one. 
3 

The dimensional analysis performed before holds now, but we find an 

additional dimensionless parameter because of the presence of k 
0' 

SO~WS 

define 

a=w/k 2 
N 0 

V = kN2/ko2 , 

introducing k 
N 

2 = UN/V. The other dimensionless parameter is the Reynolds 

number based on the scale k -1 
N ' 

It is the one in which we are doing 

(renormalized) perturbation theory and is 

g = “3J2 54 
(D-4) /2 

(43) 

= R n(D-4)/4 
(44) 

Now the renormalization group equations tell us how g,v,a and 

thenvjandm;. 
3 

correlation function, must 

simultaneously vary so variations in k N2 don't affect the physics. It 

now takes the form: 

+ ACgA 2 + lB$G”;, a a 
1-B(g,a) ag r uKta=+ 

tc 
n.m 

(g,o) 
I 

@(nrm) (zi,wi,g,",a,kN2) = 0 

where 

and 

(45) 

(46) 

(47) 

C ,,,(g,O) = (m-n) 1 - ; + F B(g,a) + y 
I 

. (48) 
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The solution to this equation is given in terns of the effective 

Reynolds number G(u). the effective viscosity G,(u), and the effective 

scale ratio a(u) satisfying 

-A(e("),a(")) dG(u) 
du - l-B(<(u),~(")) ' 

da(u) -1 
C)(")du l-B(G(").a(")) ' 

with the boundary conditions G(O) = g, g,(O) = v, a(O) = 0. Clearly 

B(u) = oe-". Then Q(n'm) satisfies, 

O(n'm)(&i,wi,g,",o,kN2) = 

O(-) (i++(-log SLS(-log5L50,kN2) X 

0 

eXP d" 'n m , [G("l,d(")] I 

-log< 

with 

(49) 

(50) 

(52) 

Y * ,(g,C = 
(in-111 (2-D)+2(1-n) + 

, 4 

This formula for@ (*A allows us to explore the zi dependence of the 

velocity correlation functions for turbulence. In any regime of k-space 

where G(-1ogS) is small, we may determine everything by perturbation theory 

for @(*pm) (+i,&%W,kN2L This will be true for large k. For small 

k we found in Ref. 3 that A(g) had a zero at g1aJ4-D'with dA/dgIgl > 0, 

so that for D'4 we could determine the small k behavior of the theory as 

well. Next we explore the behavior of turbulence mixed by our cutoff 
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r(k2/ko2) by examining A and B in perturbation theory. It is important to 

emphasize that perturbative knowledge of A and B gives us non-perturbative 

constraints on (*,m) Q via (45). 

IV. RFaNOFMALIZATION GROUP FUNCTIONS AND EFFECTIVE COUPLINGS 

TO determine the renormalization group functions we turn, as usual, 

to perturbation theory in g . The information we require for B(g,o) comes 

from the normalization condition (37) which determ%nes Z since 
" 

V 
I k fixed 
YO'"O' 0 

From the graphs in Fig. 1 we find 

2 3-D/2 
B(g,u) = & ' 32D 

I 

[p2(D2-D+2)+%(D2-D-2)] 

= -g2F(o)/Dt2 . 

(55) 

(56) 

(57) 

The ara.Dhs in Fis. 2 aive a net contribution zero with our normalization 

condition (40). So for A(q,o) we have 

A(y,o) = - ; g + F(o) 3 
49, c = 4-D _ (58) 

The behavior of the velocity correlation functions P (n,m) is 

determined by g(u) and ii(u) as discussed above. The study of g(u) is most 

important; it satisfies 
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%("I _ +("I (E-g(u)2F(Z)) --- 
du 4 

1 + +(u12F(@ . 
DC2 

(591 

We study the large wave number limit of the 0 
(*.ml 

by examining (59) for 

u = -log 5 as C,-fm , so u+ --; CT(u) = 0 e-"QD. From (55) we see that 

F('Jl 'I, (D2-D-2) , 
o-p, 

(60) 

so for D'2, F(o) vanishes rapidly for large o . The equation for G(u) 

becomes 

d$(ul -= 
du ;ii ("I (611 

?I(-log 5) = g 5 
--E/4 

(62) 

and 

for large 5 . 

This is just what we found in Ref. 3. It means that for large wave 

number the Q(n'm) may be accurately evaluated in perturbation theory in 

g(-log 5). Since G measures the "size" of the non-linearity relative 

to the linear terms in the Navier-Stokes equations, this result makes 

good physical sense. For large k2 we expect the viscous term to dominate 

the non-linear inertial term. Indeed, that is what happens for D<4(?>0). 

This effect is also apparent in the effective viscosity what behaves as 

for large 5. 

C(-log 5) = 5 V (63) 

For the behavior of the theory at small wave number, we need some 

information on rM(k2) for small k2; this is clear from (56). Let's 
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*"PPo*= that r,b p2) is such that for o+O, F(a) s co emN". NOW our 

=w=tion for G(u) as u-t+-(c-+0), is 

dG(u) q(U) (E- G(u12co eTN") 
-=- 

du 4 

1+ 
~("12Co .-N" - 

Df2 

Introduce f(u) = e 
-N" _ 

g(u12 , then 

df(u) -= -f ("I 
du 

f(u) co c 
(N - ;I + co(N+$)f(u) 

3 
. 

1+ 
D+2 

If N>E/2, then as u*, 

f(ul ,e-W-V2)u , 

(64) 

(65) 

(66) 

while 

G(u) ,T, e w4 
I (67) 

“+- 

so it becomes infinite. If N<E/2, then f(u) approaches the finite value 

(68) 

while 

ci(“12 “,” eN” [ c~,;~l,] (691 

which is again infinite for N>O. 

At this state the importance of the properties of rM(k i ) for small 

k2 have emerged. From a physical point of view it seems unlikely that 

rM(k2=O) should be anything but a finite number. Since 

rM(k2=O) = dDx :(x2) , (70) 



Reply to the Referee on “The Behavior 
of Homogeneous Turbulence Mixed at Long Wavelengths” 

I appreciate the long and careful review given by the referee of my 

paper. I will try to address the two important points he raises: (1) a 

question about the behavior of the effective coupling as one varies the bare 

Reynolds number, and (2) the phrasing on p. 17-19 about TM(O). 

(1) The renormalized Reynolds number, g, is an infinite series in go, 

the bare or unrenormalized Reynolds number. If the function A(g) has a zero 

with positive slope at g = gl and a zero with negative slope at g = 0; e.g. 

A(g) = -j$gtag3 , =>O, 
I 

as in the theory of turbulence, then one can solve for the g(g,) relation by 

using the boundary condition that when go + 0, g -L 0. The relation, good at 

the same level as A(g), is 

g* = go* 
1 + go*/g,* ’ 

From this one sees that as the bare Reynolds number go ranges over 

0 <I2 - 0 < m, g ranges from zero only up to gl. The effective coupling 9” 

reflects this behavior. As k + m, if g+ 0 for any go, it goes to zero for 

every go. 

I believe there is an important physical point to be made, and perhaps 

that is what the referee is driving at. k-t - literally means leaving the 

inertial range and moving into the deep dissipation range where k >> n -1 = 

(E/v~?. In that range, whatever the bare Reynolds number for D < 4, vV2vj 

will dominate the inertial term. Perhaps I am wrong, but I don’t see a 



possible disagreement with that. The issue, then, is the behavior in the 

intermediate regime where k is large compared to 0 or ko, but still outside 

the deep dissipation regime. Here the interpolating formulae derived in 

Section V of this paper are the tool to explore this region. 

As to the behavior of g changing as R. changes, I cannot agree. I 

recommend the referee explore the field theory of a scalar field with io$ ’ 

coupling in D dimensions. The nature of perturbation theory in X0 changes 

at D = 4, regardless of the size of 1,. For D < 4 two phases of the theory 

are possible. One is connected to perturbation theory and has a dissipation 

region where as k + -, Ieffective + 0. The other has Xeffective +m as 

k + m. For D 2 4 only one phase exists. The presence of two phases is not 

dependent on the size of X0. The turbulence problem is much the same. 
? 

where, however, we are fortunate in having a physical boundary condition to 

choose the appropriate phase for D < 4. That boundary condition is the 

existence of a dissipation region where VV ‘vi dominates v’ Vvj and the 

effective Reynolds number goes to zero. 

(2) On rereading the paragraph beginning on the bottom of p. 18 1 can 

see how it should be rewritten for darity. I enclose an altered paragraph to 

address that. 

I think this should make it clear that my preference for FM(O) f 0 has a 

sound physical basis. 

One last comment which pertains to the referee’s statement about E(k) 

decreasing as I’&). For very large k, i.e. in the deep dissipation region 

that is what physically one would expect some transport by ?-Vvj has 

become unimportant. For large k but still less than rl -I there is a 

combination of effects consisting of energy transport by C-W. 
1 

and 

decreased input due to the fall off of rM. It seems to me possible, though 

not yet demonstrated that a balance yielding a Kolmogorov spectrum could 

arise, though I do not expect it in a neat analytic sense. 



Substitution for paragraph at bottom of page 18: 

At this stage an aside is in order. By looking at the time dependence 

of the decay of homogeneous, isotropic turbulence in the final stages of 

decay one can learn directly about TM(kL = 0). There are two competing 

hypotheses about the behavior of l$O). One is given by Batchelor,4 Section 

5.4, where he argues that the analyticity of the velocity correlation function 

at k = 0 requires 

pM(k2) s k2 (75) 

near k2 = 0. This has been criticized in detail by Saffmann’ who argues 

instead that the analyticity assumption is more properly made about the 

vorticity correlation function. Then one has $,(O) finite and, furthermore, 

an invariant of the motion. An additional argument in favor of Saffman’s 

conjecture is that~ rM(0) f 0 would imply, for long times into the decay 

period when the degrees of freedom of the fluid had time to come to 

equilibrium after whatever mixing had occurred, that the energy spectrum 

E(k) behaves as kD-’ which one expects from equipartition. It is important 

to note that there is a difference between E(k, t) in non-stationary 

turbulence and E(k) in the stationary case. It is E(k, t) which for long times 

after the mixing behaves at k-+ 0 as k D-l when &(O) f 0. E(k) has an 

additional factor of k -2 and behaves as E(k) S kDW3 when rM(0) f 0. For 

generality, however, it is easy enough to consider a behavior like (75). Then 

N = 1 at D = 3, and i(u) -tm as u+ m or 5-f 0. 

Add to references 

9 P.G. Saffman, J. Fluid. Mech. 27, 581 (1967). 



In first paragraph on p. 21 change first sentence to: 

For the circumstances mentioned above rM(k2) (I: k2 for small k, N = 1, and 

we see that C(u) is zero at both ends of the wave number spectrum for 

D = 3. 
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it is clear that Ii( the random force correlation function in ordinary 

space, must oscillate in some fashion to make I',(k*=O)=O. Furthermore, 

since E=fCO)#O, and we expect i;(x*)+O as x-m, singular behavior of 

r,(k*) at k*=O also appears unlikely. 

We can henceforth safely assume rM(0) is some finite number which we 

choose by convention to be unity. From (56) we see then that 

F(o=O) = & 
& p* (c*-o+*) +f (D2-D-2) 

(**ID P2 (P*+f) 3 
, (71) 

which corresponds to the case N=O above. The effective Reynolds number 

for small wa"e number approaches 

9(-log 5) %E (72) 
0 

and 

=0 
= F(o=O) . (73) 

This is just the situation encountered in Ref. 3 as o no longer enters. 

Using the idea that s=4-D is small, we can then evaluate co at c=O and 

expand appropriate quantities which are $ower series in 9 in powers of 

E . In this instance we know3 that 

9(-log 5) 
f 

i!E 
4n 

5: 3 . 
(74) 

At this stage an aside is in order. By looking at the time dependence 

of the decay of homogeneous, isotropic turbulence in the final stages of 

decay Batchelor (Ref. 4, Sec. 5.4) presents evidence that r,(k*=O) is zero 

and, indeed, behaves as 

$Jk*) = k4h,(k2) (75) 
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with hM(0) finite. Monin and Yaglom (Ref. 1, Sets 15.3-15.5) review and 

criticize this result but suggest that the behavior of r,(k*) may be as 

k* for k*.&. In these cases N, above, is not zero and the effective 

Reynolds number g(u) becomes infinite for low wave numbers. Examination 

of F(o) for these cases shows that when rM 0: k4v then N=l+E/2 and when 

$Jk*) = k2, then N=# in D=3. In each case G(u)- as u+= or S-to. 

This circumstance, if correct, can be treated by noting that the 

expansion parameter is not g2 only, but is g 2. 
tmes some function of o 

and the interplay between e and d=Oe -u is essential. Suppose then 

we identify the dimensionless expansion parameter in the functions A(g,u) 

or B(g,o) or @ 
(n,m) to be 

G = qA(a) 

where we will choose A(a) to make the behavior in z(u) as smooth as 

possible. Now 

dc 
du = du as A(d) + g -$ II(B) 

-A(L?,a) 
= l-B(g,d) 

n(a) + G 2 log A(o) . 

We have to lowest order in g* 

F(o) 
A(g,o) = - $ q + 4 q3 

SO 
; & E3F(Ci) 

de(u) -= 412(E) 
2 

du 
+ ECU, &oq A(d) , 

1t G*F (3, 

(D+*)A(a)* 

so it seems we should choose 

(76) 

(77) 

(78) 

(79) 
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A(a) = F(a) 
5 

and 

d;: - = ;(; + 4 2 log F,,,) - $(l + 67) 
du 

(80) 

(81) 

keeping consistent powers of g(or G). 

As w-m or c++-, the large wave number limit of the theory, we have 

F(o) ?r CJ'-~" 

which results in 

G(u) ‘Ir .u/z 

u-em 

which means our modified effective coupling constant (expansion parameter) 

is small in the large k2 limit. For small k'(u-HpD) we again take 

F(3) % e 
-Nil 

. Then we can solve for z(u) from (81). and find 

e(u)2 = c(o)2 
1 + $ (1 ; E/DtZ) ($-N)"-3 . 

(82) 

2 N 

SO when E/ZXJ, we have 

E(u) 2 E -2N 
,L U+c/D+Z) 

2 which, as expected, is O(E) for N=O. When E=ZN, '?G(u) goes to zero as 

2 
G(u) % 

2 
u- (l+c/D+2)u ' 

while, when N>E/~. i;(u) again goes to zero, but now 
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G(u) 
2 

- (N-5) u 
?r e 

u-k= 

For the circumstances mentioned above: rM(k 
2 

) - k4 for small k, N=lt 5 

and we see that C?+(U) is zero at both ends of the wave number spectrum. 

For intermediate wave numbers a treatment similar to the one given in 

Sec. V below is needed. 

Now we return to the case r,(k'=O) = 1 whose physical motivation we 

have discussed. In this situation the effective Reynolds number runs 

between zero at large k and O(G) at small k . It would suggest 

then that a perturbation series in 4 to determine the velocity 

correlation functions @( *,=I) would be appropriate. 

We really have to a bit more careful here if we wish to be 

numerically accurate for large Reynolds number. The renormalization 

group as presently formulated probes variations of @ (n,m) 
on the 

scale of k 
2 

N . 
The ratio 0 = kN2/ko2 is 

(83) 

and will be very large when R is large. Indeed, at D = 3 we have 

kN 
= R2k 

0' 
To make an accurate determination of the variations of the 
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~ (*,m) on a wave number scale 'kg or in the inertial range kg<<M<flk 
0 

we will have to examine a resummation of the perturbation theory in g. This 

is accomplished by the techniques of Refs. 6 and 7 developed in high energy 

physics. 

To see these remarks in context let us look at two forms forG (lrl' 

calculated to order g2 from the graphs in Fig. 1. First we write the 

answer with all wave numbers scaled to kN; 2 2 2 
k =K kN : 

(k',&V,g,W = ' 

d”pr 
M 

(op’) 

x (84) 

In this form it is clear that for variations of k on the scale of kN, 

the correction term is small both because we are to use 4 and 0 and 

because o in rM is large. 

Next rewrite the same expression by scaling the wave numbers by kg, 

k2 = ko2e2: 
I- 

k02G(1'1' 
(k2,w,v,g.o) = 

1 
l- 

i 

R2 1 

zat i2 2 (27) 
D -iw 

VkO 

--y +t2 
vkO 

d$r,(p') 
x (85) 

P 
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This form indicates that for large R, the correction term would swamp 

the first order term for wave numbers on the scale of k 
0' 

When using the 

reno?zmalization group we must, of course, replace R by 

%-log k/kg) = g(-log k/kg)0 
(g-D)/4 k (4-D)/4 

i 1 ko 
, (86) 

which does eventually cut off the correction term for k/k0 smell. Until 

our resununation is performed, however, one must be rather wary of accepting 

perturbation theory as numerically accurate for kzko. Let us now turn to 

that. 

V. USING THE ~NORMALIZATION GROUP TO EVALUATE THE 
VELOCITY CORRELATION FUNCTION 

(2,O) The full content of the renormalization group constraints on @. 
1% 

are contained in (52) and have in essence been given in Ref. 3 end in the 

previous section. In this section we went to show how to derive an 

expression for @!"O) 
32 

which has the correct large and small k behavior 

as determined above and, in addition, allows us to interpolate between 

these limits. Knowing that g(-log 5) always lies between 0 and Ok 

allows us to make a perturbation expansion in (52), but generally does not 

yield a compact and manageable form. So we proceed differently. 6.7 

We will calculate G(2'0)(k2,0,~0,~0,k0), as defined in (351, and 

recover '3!2'o' by 
If. 

2 

#!"')(k' w y " 
IL 

r c o, o,ko' 
YO 

= 4 Aj2e(k' G~2~01~k2,~,Yo,"0,ko~ . (87) 

We are concentrating on the unrenormalized, but complete-including all 

fluctuations-Torrelation function, as that is the physically measurable 

quantity. 
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Our goal is to determine the dimensionless factor Z given as 

G(2~0)(w,k2,yo,"0,kO) = 
r,(k2/ko2) 

u2+v 02k4 
z(90'"o';o) 

where 

a0 
= k2/ko2 . 

(88) 

(89) 

(90) 

(91) 

Since the coefficient of Z in (88) is precisely the value ofG (2,O) for 

yo= 0, we know 

Z=l+O(So2) . (92) 

We want to use the renormalization group to evaluate Z beyond this power 

series form. 

Just to get a feeling forwhatthis means, lets ignore x0 and o. 

momentarily and suppose we had determined that Z = l-zoGo2 . By studying 

the conditions for renormalizing y. into Y and u. into v, Eqs. (37) and 

(401, we learn that 

A(g) = w $ ; I 
E - = - 4 g + as3, d>O . 

Furthermore we note 

a 
H(g) =w ~1cKJ z I =hg2 , 

yo'"o 

(93) 

(94) 
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:loq Z(g) = H(g)/A(g) . 

Since Z(&O) = 1. we may integrate this to find 

9 

Z(g) = exp 

s 

dg'H(g')/A(g') 

0 

= (1 - g2,g12)h/2= , 

with 

2 
91 

= c/4a . 

FERMILAB-Pub-78/40-THY 

(95) 

(96) 

(97) 

(98) 

In the same spirit the relation between go and g tells us 

so 

1 + so2/q12 = -2’ 
1-q Al2 

, 

Go) = (1 + so2/g1 2 -h/2a ) 

(99) 

(100) 

2h - 2 
=1-Eq0 + . . . . . (101) 

This is the improvement on Z(go) = 1 - Zogo2 which comes from using the 

renormalization group. The key ingredients were the power series in the 

renormalized CouPlhq, g, and the inversion formula (99) to determine g 

as a function of q 
0' 

This formula also shows an essential point of this 

exercise: as q2 varies from zero to g 12< go2 varies from zero to infinity. 

The form (100) for Z(qo) is valid in that whole range. This, as we will 

now see, allows us to treat large Reynolds number as well as small. As a 

last observation we remark that this procedure is systematically improvable 

by evaluating higher orders of perturbation theory for the renormalization 

group functions A(g) and H(q). 
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NOW we want to determine the x0 and o. dependence of z as well. 

For this we must enlarge upon our normalization conditions (36) and (37) 

as follows: choose 

and 

s?-G;‘l) (k2,w)-l 

I 

= vz -1 
1 ’ 

ak 
w= iu, 

k2= qN2 

G(l,l) with Zl the scale factor relating R and G(1'1) 

($1.1) = z ($1’1) 
1R 

, 

(102) 

(103) 

(104~) 

and GU'U 1s the full (to all orders in Y,) unrenormalized correlation 

function for xj and ?.. So we must have 
I 

a G(l,l) ck2 w y I , Os~O,kO) 
-1 

-z 
= -i Zl(g,x,O) , (105) 

W =iW 
N 

k2=qN2 

a - ($1’1) &2 w y 2 -1 
r I On’JO,ko 1 = " = "oz"(q,x,~) I (106) 

ak2 0 =iW 
N 

k2=qN2 

with 

-J-b 2, 
(D-4)/4 

' = .3/2 N , (107) 

(108) 
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and 

ct = qN2/ko2 _ (109) 

Y is still given by the normalization condition (40), so Z 
Y 

is as before, 

while z 
1 and zv are defined by these revised normalization conditions. 

Before3 we took q N2=0 and noted Zl=l then. The combination 2 =z/Z:'2 

relates go and q as 

YO q=zg =z-.-..- 
(D-4) /4 

0 3/2 '%I 2, 

\)O 

(110) 

Our goal is to find expressions for Zv and Z and from that for Z 

similar to the II' Improved" expression (100) given above. TO begin we need 

the three renormalization group functions 

a 
Aq = qN2 --y- q 

a% 

, Yo,vo fixed 

and 

as well as 

(Bu,~q,BO) = . (112) 

yo,vo fixed 

Next consider the various Z's as functions of q, x, o which, using the 

chain rule,implies 

A 
W=A 

5' 
a 1Oq z t (Bw-1)x $ 

w aq 
log z , 

A+$, 
=A 

q 
qj+l,oqZ+ (l+Bq)x-+qZ+o~lOgZ , (114) 
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and 

AO 
-= Ao ag p log z t B. x 2 loq z - o +lloq z . 

9 
(115) 

From this we learn 

q -? log Z(g,x,0) = 
&(g,x,o)+ ; g(l-Bw(q,x.d) 

aq 
, (116) 

~(S.X,O) 

with 

i(g,x,v) = (l-Bu)(~O+~q) + (l+~ +B )A 
0 q fJJ 

. 

The boundary condition 

Z(q=o,x,o) = 1 

allows us to write 

I 

q 

Z(g,x.d = exp 
dq' ncq ' .X,V)' 

o ~kr'.x,N q' 
+ $ (l-Bw(q',x,d) 

I 
. 

Similarly we learn 

9 

Zy(qrwJ) = exp 
s 

dq' 
Bkl' .X,0) 

I 
0 ~(q',x,0) 

where 

B(q,x,o) = (l-Bu) (B~+B~) + (l+~ CB )B 
9 0 w 

= B. + Bq + B w - 

(117) 

(118) 

(119) 

(120) 

(121) 

(122) 

The same kind of equation for Zl is not needed unless we wish to evaluate 

the full G(l'l) by integrating (105) and (106). However, we do desire to 

have such a set of equations for Z so we need 
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Cw> cq,co = 
a 

WN~ q % 

I 

(123) 

yo'" 0 

and from this we discover g 
~k,v') = exp 

0 

dg' &',x,~~(g,,x,Gj , 

where 

(124) 

C&,x,0) = (i-Bu) (co+cq) + (i+Bq+~o)~w . (125) 

Next We want to solve for q and x as functions of q 
0 

and x 
0' 

To do that we must calculate the A, B, and C functions introduced above. 

We can only do this in perturbation theory in q and in this paper we 

will satisfy ourselves with the one loop graphs in Figs. 1, 2 and 3. The 

functions we need can be written as 

A(q,x,v) = - t q + ak,vlq3 , (126) 

B(q,x,v) = b(X,v) q2 , (127) 

Bu(q,x,v) = buk v) q 
2 

, (128) 

C(g,x,v) = c(x.0) g2 . (129) 

Using these in the equation for Z results in 

Z(g,x,v) = 1 - g2/q1(x,rA2 (130) 

with 
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and 

q12(x,o) = 4a(: v) , (131) 

2 
z"b3,x.u) = 1 - q 

( 

b(x,v)/2=(x.v) 

qGcd2 
, (132) 

Z(q,x.v) = ( 1 - 92 
q1(x,d2 1 

c(x,o)/2a(x.o) 

. (133) 

From the Eqs. (113)-(115) and similar equations for derivatives of log z 

and log Z we can conclude that the ratios b /a, b/a, and c/a entering in 
" w 

(130), (132). and (133) are independent7 of x and o _ For example, 

take the derivative with respect to x of log Z 

, (134) 

However, there will be no logarithms appearing in the expression for 

x 2 log Z. just ratios of polynomials, so b /a is independent of x; much 
w 

the same argument holds for its o dependence, and the same holds for the 

ratios b/a and c/a. In any actual calculation we will not find explicit 

independence of these ratios except near q = gl, but for purposes of 

carrying forward we will assume them constant and evaluated at x=0, o=O. 

As a useful, but not necessary simplification, we will now imagine E is 

small and use this in (130), so we may employ the relation 

(135) 

to express q as a function of x, 0, and q 
0 
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1 + ~02/glw 2 
= (1 - g*/g,(x,o)*) 

-1 
. (136) 

Then, of cclurse, 

-b/2a 
z 
v 

= (1 + LTo2/g1(x,cd *) (137) 

and 

z = (1 + ~02/glbJ)*) 

-c/*a 

(138) 

The relation between x, 
90' and x0= voqN2/iwN is given by 

X=7, 
Y xo (139) 

2 

= (1 + go2/g1(x,")) 
-b/2a "O'N 

7 . 
=WN 

(140) 

Since qNand i,+ were arbitrary points in %,w space, we may finally write 

2 -c/*a 
- - - 

z(go,xo,oo) = 
YO 

1 + - 
ck*) --E/2 

Vo3 g]x,k2/ko2)* 
, (141) 

with x determined implicitly by 

2 
YO x= 1+- 

[ 

Ck2) -v* -b/2a vOk2 
- _ (142) 

YO 3 g,(x,k*/I$ 
w 

From these results we may now determine the behavior of G (2,O) for 

large and small k*. For large k2 we see that Z+l and G (2ro) is just the 

lowest order value, the coefficient of 2 in Eq. (88). This is what we 

expect because the effective Reynolds number as ka goes to zero3 and the 

non-linearity of the Navier-Stokes equation becomes unimportant. 

For k*+O, we have 

z k$33 $xfo’~2a~k2~c~,4a , 
(143) 
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zy *>p3%~y~‘*= (k2)bE’4= , 

l+Eb/4a 
and from (142) we see that x is a function only of u/(k*) for 

small k*. This means ($2.0~) behaves as 

rMw 
G(2'o) s - 

k*Y) k4 
(k2j4= -ic-2b'(k2+:b,2a) ' 

while E(k), the energy spectral function, which is 

2nD/*kD-l 
+m 

E(k) = 
r(D/*) 

(D-1) dw G(*,o) 

-m 

E(k) Q kD-3-P , 
k-'O 

where 

P = - 2 (c-b) = - 2g 12k-b) , 

(144) 

(145) 

(146) 

(147) 

(148) 

which is the same behavior found before. Because c/a and b/a are 

independent of x and 0 , P will be - $(4-D), when b and c are 

evaluated at D=4, as explained in Ref. 3. 

We set out to find a method which allows us to determine the behavior 

of G(*,o) 
for all k*, even for large Reynolds number. This Reynolds number 

can only be that formed from y , and k. - the physical-unrenormalized 

paranleters, since in ~~2~01ik2~~,~~,~o,ko~ only they appear; so it must 

be 

YO (D-4) /4 

% = 3/2 (ko2) 

vO 
(149) 
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The equations for 2 and x are 

and 

RO 
2 

-c/2a 

- - - 
z(g~'xo,uo) = 1+ 

gl(Xrk2/k02)2 
(150) 

RO 
2 2 E/2 

()I 

-b/2= 

kO vOk2 
- 

g1(X,k2/ko2)* k2 
- . (151) w 

These formulas hold for large and small R. - the physical Reynolds number. 

These now show us that we have achieved our aim. The question raised in 

the previous section is answered and the only physical length in the 

problem, namely, k 
-1 

0 ' 
sets the scale on which wave number variations may 

be examined. 

Gathering together our formulae we finally find 

(92,O) 2 
(w,k rRO,vO,kO) = 

r,(k*/k,*) x2 2(R0,~,k2,'k0*) 

vOk4(Zv2(Ro,x,k2/'k02)tx2) ' 
(152) 

with x, Z 
v' 

and Z given before. This formula holds for all k and W. 

The only approximation has been to use the one loop contribution to the 

renormalization group functions. This can be systematically improved 

by doing perturbation theory or some other summation procedure. 8 
It is 

clear that a key ingredient in the whole analysis is the zero in A(g) at 

2 
g1 

- E. This is the important observation that enables us to use our 

formulae for all k and allows us to carry out the resummtion of 

perturbation theory expressed in (150). We have demonstrated this zero 

only to one loop order in perturbation theory in g. Experience in 

condensed matter studies of phase transitions and high energy physics 

indicates that this zero will persist in higher order evaluations of A(g). 



-34- FERMILAB-Pub-78/40-THY 

One immediate implication of this whole exercise is that we see 

nowhere the natural emergence of a k 
-s/3 

law for the energy spectral 

function. It would seem appropriate to conclude that when we maintain 

turbulence by a random mixingstationary turbulence-in the homogeneous, 

isotropic situations we have examined, the reasoningalmost dimensional 

analysis4-leading to the k 
-5/3 

law may not be correct. It is possible 

now to use (152) for a specific choice of 
2 2 rM(k /k. ) to study the behavior 

of E(k) in a situation where Rois very large end the inertial range: 

k<<k<<Jir6:ko is also sizeable. We know from the general analysis that 

for very small k , E(k) % k-' at D=3 and for very large k Elk)sl',(k2/ko2) 

at D=3. Somewhere in between it must stop rising as k-' and then turn over 

to fall as r For some range it may well behave as k 
-5/3 

M' 
, but the present 

analysis gives little reason to focus on that power law. 

VI. SUMMARY AND DISCUSSION 

In this paper we have treated a turbulent fluid mixed by a random 

stirring force which sets up a stationary homogeneous, and isotropic 

velocity field. Although such a physical circumstance is not normally 

encountered it is not difficult to imagine creating such a situation in 

a laboratory environment. The requirement of stationarity means that we 

are asking for the response of a fluid obeying the Navier-Stokes equation 

to an external random forcing set up very long ago and continuing into 

the future. The issue then is the importance of the non-linearity due 

to the G+Vvj term in the dynamics. We find that for a wide class of 

forcing functions the non-linearity is always week in spatial dimensions 

less than four. These forcing functions are those whose correlation does 
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not vanish at vanishing wave number. Using the Novikov'connection between 

for correlation function of the mixing and the net energy dissipation due 

to viscosity we argued that this behavior is likely to hold in many physical 

situations. 

After the discussion of turbulence mixed essentially in small wave 

number (k 2 k. = wave number characterizing the external stirring) we 

turned to the construction of the two fold velocity correlation function 

(2,~) = dDx e 
i d*Lt) 

<vjG,t)"~(O,Ob , (153) 

using the renormalization group. Our technique, adopted from similar work 

in high energy physics, ‘3,7 consists in essence of summing pieces of all 

orders of perturbation theory in the dimensionless coupling of the theory, 

the Reynolds number. In one view it adds up all the most singular terms 

near four space dimensions for each order of perturbation theory. The 

procedure is systematically improvable by making better approximations to 

the renormalization group functions. We used the one loop approximation 

in this work and can imagine doing two or three loops with some effort. 

After that one can turn to recent techniques 
8 

for learning the behavior 

of such functions in very high order of perturbation theory to underpin a 

Bore1 or Pad&Bore1 approximation method. 

In the mixing forces we treated, the energy spectral function E(k) 

behaves at small k as k 
D-3-p 

where p is determined as a power series 

in p=4-D and in the lowest order is P=-1(4-D)/3 as in our previous work. 3 

For large wave number, E(k) follows the input spectrum accurately since 

the effective Reynolds number behaves as k -(4-D) /4 
for DC4 and non- 

linearities are not important. In the middle range one may study in 
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detail any particular model for the stirring by the methods indicated 

just above. There does not seem to be any clear way in which a Kolgomorov 

k-5/3 spectrum appears. 

A much more realistic example of mixing can be treated with our 

methods. A fluid passing through a screen of spacing M may be 

represented, from the viewpoint of an observer moving with the mean flow, 

as a stirring occurring primarily at wave number SM -1 
and during a very 

brief time interval. A random forcing function would then represent the 

perturbations suffered by the flow and be a stand in for a random 

distribution of velocities taken at the screen. If the duration of 

mixing were T , a suitable correlation function for the mixing may be 

2 
cFj&.t) F,&T)> = $ Aja(V)r,((~-:-;;)*/~*)6(~-t)x8(t)8(T-t) . (154) 

The study of the turbulent motion after such a pulsed mixing will be 

presented in the next paper in this series. 
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NOTE ADDED IN MANUSCRIPT: 

After writing this paper I received a communication in which it was 

kindly brought to my attention by U. Frisch that there is a body of work 

on the use of the renormalization group in the theory of turbulence that 

had escaped my attention. This work is summarized in the thesis of 

Jean-Daniel Fournier entitled "Introduction to the Renormalization Group 

for the Study of Certain Problems of Large Scale Turbulence" (in French). 

Particular note appears appropriate of the work of D. Forster, D.R. Nelson; 

and M.J. Stephen, Phys. Rev. A16, 732 (1977) and J.-D. Fournier and -- 

U. Frisch, Phys. Rev. A17, 747 (1978). --- 

These authors use the renormalization group in the fashion of 

J. Kogut and K. Wilson, Phys. Rep. 12C, 75 (1974), which is very well 

tuned to the study of the sine.11 wave number behavior of turbulence. The 

intermediate and large wave number behavior end the explicit construction 

of the correlation functions, as is done in the present paper, are quite 

difficult in that approach. Clearly the spirit is in this earlier work 

end must be properly acknowledged. I am very grateful to Professor 

Frisch for making me aware of this work. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

The graphs, up to one loop, contributing to the 

velocit~nti-velocity correlation function. These 

give the renormalization constant Zy which rescales 

the viscosity. 

The graphs, up to one loop, contributing to the fusion 

vertex which is the non-linearity of turbulent motion. 

These give the renormalization constant 2 which rescales 
Y 

the non-linearity. 

The graphs, up to one loop, contributing to the velocity- 

velocity correlation functions. 
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